Investigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots.

نویسندگان

  • Haiguang Zhao
  • Hongyan Liang
  • Belete Atomsa Gonfa
  • Mohamed Chaker
  • Tsuneyuki Ozaki
  • Peter Tijssen
  • François Vidal
  • Dongling Ma
چکیده

We present for the first time detailed investigation of the charge transfer behavior of PbS@CdS core@shell quantum dots (QDs) showing either a single emission peak from the core or intriguing double emission peaks from the core and shell, respectively. A highly non-concentric core@shell structure model was proposed to explain the origin of double emissions from monodisperse QDs. Their charge transfer behavior was investigated by monitoring photoluminescence (PL) intensity variation with the introduction of electron or hole scavengers. It was found that the PL quenching of the PbS core is more efficient than that of the CdS shell, suggesting more efficient charge transfer from the core to scavengers, although the opposite was expected. Further measurements of the PL lifetime followed by wave function calculations disclosed that the time scale is the critical factor explaining the more efficient charge transfer from the core than from the shell. The charge transfer behavior was also examined on a series of single-emission core@shell QDs with either different core sizes or different shell thicknesses and dominant factors were identified. Towards photovoltaic applications, these PbS@CdS QDs were attached onto multi-walled carbon nanotubes (MWCNTs) and their charge transfer behavior was compared with that in the PbS-QD/MWCNT system. Results demonstrate that although the CdS shell serves as an electron transfer barrier, the electrons excited in the PbS cores can still be transferred into the MWCNTs efficiently when the shell thickness is ∼0.7 nm. Considering their higher stability, these core@shell QDs are very promising for the development of highly efficient QD-based photovoltaic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films.

N-type metal oxide solar cells sensitized by infrared absorbing PbS quantum dots (QDs) represent a promising alternative to traditional photovoltaic devices. However, colloidal PbS QDs capped with pure organic ligand shells suffer from surface oxidation that affects the long term stability of the cells. Application of a passivating CdS shell guarantees the increased long term stability of PbS Q...

متن کامل

Gating of hole transfer from photoexcited PbS quantum dots to aminoferrocene by the ligand shell of the dots.

Photoinduced hole transfer from PbS quantum dots (QDs) to aminoferrocene only occurs if the ligand shell of the QD allows aminoferrocene to gain direct access to the inorganic core of the QD; the permeability of the ligand shell is therefore more important than its conductivity in determining the probability of interfacial charge transfer.

متن کامل

Investigation of the Third-Order Nonlinear Optical Susceptibilities and Nonlinear Refractive Index In Pbs/Cdse/Cds Spherical Quantum Dot

In this study the third order nonlinear susceptibilities are theoreticallycalculated for an electron confined in an isolated PbS/ CdSe/ CdS spherical core-shellshellquantum dots. Our calculation is associated with intersubband transitions in theconduction band. We used the effective mass approximation in this study which is asimple and straightforward study of the third-order optical nonlineari...

متن کامل

Size Dependence of Temperature-Related Optical Properties of PbS and PbS/CdS Core/Shell Quantum Dots

The effect of PbS core size on the temperature-dependent photoluminescence (PL) of PbS/CdS quantum dots (QDs) in the temperature range of 100−300 K was thoroughly investigated and compared with shell-free PbS QDs. The core/shell QDs show significantly smaller PL intensity variation with temperature at a smaller PbS size, while a larger activation energy when the PbS domain size is relatively la...

متن کامل

Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.

We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells sensitized with PbS QDs. The significantly enhanced mean electron lifetime and electron diffusion l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2014